Special Practice Problems sudhir jainam

~[JEE (Mains & Advanced)]~

Topic: Permutation & Combination

* भागते रहो अपने लक्ष्य के पीछे, क्यूंकि आज नहीं तो और कभी, करेंगे लोग गौर कभी, लगे रहो बस रुकना मत, आयेगा तुम्हारा दौर कभी।

							ź.
•	Objective Question	ns Type I [Only one correct	t ansv	ver]		1 14 5	
	In each of the questions be most appropriate.	low, four choices are given of which o	only or				
1	 4 points out of 8 points in different quadrilateral that is (a) 56 	a plane are collinear. Number of at can be formed by joining them (b) 53		number of ways whof 5, is (a) 75 (c) 95	(b) (d)	1020 1030	
2	(c) 76	(d) 60 ters that can be formed with the	9.	If the number of war	earing the n	ımber 0, 9,	3, so that the
	letters of the word IITJEE (a) 42	is (b) 82		cannot be used to equal to (a) 3		1 4	5 95, then <i>n</i> 1
3	(c) 102 3. Let T_n denote the number	(d) 142 of triangles which can be formed	10.	(c) 5 If <i>a</i> , <i>b</i> , <i>c</i> are odd po	(d)	6	ber of integra
	using the vertices of a $T_{n+1} - T_n = 21$, then n equ (a) 5	regular polygon of <i>n</i> sides. If als (b) 7		solutions of $a + b +$ (a) 14	c = 13, is (b)	21	the .
	(c) 6	(d) 4	11	(c) 28 A rectangle with		56	l divided into
4	BANANA in which the two (a) 40	nents of the letters of the word N's do not appear adjacently is (b) 60	11.	squares of unit leng be formed with sid	gth. The num es of odd len	ber of rectar	ngle which car
5.	(c) 80 The total number of integrations of the control of the con	(d) 100 gral solution for x , y , z such that		(a) m^2n^2 (c) 4^{m+n-1}		none of the	1.1
	xyz = 24, is (a) 3 (c) 90	(b) 60 (d) 120	12.	The lock of a safe features the digits of dialing a special codays sufficient eno), 1, 2, , 9. mbination of	The safe can the digits.	n be opened by The number o
6.	that b does not follow a , an not follow c , is	ions of the letters a, b, c, d such and c does not follow b and d does		lasts 13 h and 5 s digits is	are needed t	o dial one o	ombination o
	(a) 9 (c) 13	(b) 11 (d) 14	12	(a) 9 (c) 11 The interior angle	(d)	12	measure 160
7.	students including at least at least two students. The	we have to form a team of the two students and also excluding number of ways of forming the		each. The number (a) 97 (c) 135	of diagonals (b) (d)	of the polyg 105 146	on are
	team is (a) $2^n - 2n$	(b) $2^n - 2n - 2$	14.	If $a, b, c \in \mathbb{N}$, the m			position vector
	(c) $2^n - 2n - 4$	(d) $2^n - 2n - 6$		$a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$ such (a) 110		116	
8.	Two numbers are chosen in 151 and multiplied together.	from 1, 3, 5, 7,, 147, 149 and ther in all possible ways. The		(c) 120	(d)	127	

15.	The number of 5 digit numb	er of the form abcba in which	28.	The maximum number o	f points into which 4 cire	cles and 4
	a < v is			straight lines intersect, is	S	
	(a) 320	(b) 340		(a) 26	(b) 50	
	(c) 360	(d) 380		(c) 56	(d) 72	
16.	Sum of all the odd divisors of	of 720 is	29.	If 7 points out of 12 lie of	n the same straight line	, then the
	(a) 76	(b) 78		number of triangles, thu	s formed, is	
	(c) 80	(d) 84		(a) 19	(b) 185	
17.	Let $A = \{x_1, x_2, x_3, x_4, x_5, x_6\}$	$B = \{y_1, y_2, y_3, y_4, y_5, y_6\}.$		(c) 201	(d) 205	
	Then the number of one-on	e mappings from A to B such	30.	The total number of way	s in which 9 different to	ys can be
	that $f(x_i) \neq y_i, i = 1, 2, 3, 4,$	5, 6 is		distributed among three	e different children, so	that the
	(a) 720	(b) 265		youngest gets 4, the mide	lle gets 3 and the oldest	gets 2, is
	(c) 360	(d) 145		(a) 137	(b) 236	
18.		hen 1!+ 2!+ 3!++ 175! is		(c) 1240	(d) 1260	
	divided by 15 is	43.0	31.	Every one of the 10 avail	lable lamps can be switc	hed on to
	(a) 5 (c) 3	(b) 0		illuminate certain Hall. T		s in which
10		(d) 8		the hall can be illuminat		
19.		element subsets of the set λ times the number of 3		(a) 55	(b) 1023	
	elements subsets containing			(c) 2 ¹⁰	(d) 10!	
	(a) $(m-1)\lambda$	(b) $m\lambda$	32.	The number of ways in v	which / persons can be s	eated at a
	(c) $(m+1)\lambda$	(d) 0		round table, if two patogether, is	irticular persons are i	iot to sit
		5 52 7 7		(a) 120	(b) 480	
20.	When simplified, the expres	sion ${}^{47}C_4 + \sum_{n=1}^{5} {}^{52-n}C_3$ equals		(c) 600	(d) 720	
	(a) ${}^{47}C_5$	(b) ⁴⁹ C.	33.	The number of ways in	which r letters can be p	osted in n
				letter boxes in a town, is		
		1000 1000 1000 100 0		(a) n^r	(b) r^n	
21.	If ${}^{n}C_{r-1} = 10$, ${}^{n}C_{r} = 45$ and	${}^{n}C_{r+1} = 120$, then r equals		(c) ${}^{n}P_{r}$	(d) ${}^{n}C_{r}$	
	(a) 1	(b) 2	34.	The number of ways in v	which three students of a	class may
	(c) 3	(d) 4			B, C or D, so that no two	o students
22.	The least positive integral	value of x which satisfies the		receive the same grade,		
	inequality ${}^{10}C_{x-1} > 2 \cdot {}^{10}C_x$	is:		(a) 3^4	(b) 4^3	
	(a) 7	(b) 8		(c) 4P_3	(d) ${}^{4}C_{3}$	
	(c) 9	(d) 10	35.	Six identical coins are ar	ranged in a row. The tot	al number
23.	The number of diagonals th	at can be drawn in an octagon		of ways in which the	number of heads is equ	ual to the
	is			number of tails, is		
	(a) 16	(b) 20		(a) 9	(b) 20	
	(c) 28	(d) 40		(c) 40	(d) 120	
24.	The number of triangles the	nat can be formed joining the	36.	If 5 parallel straight li	nes are intersected by	4 parallel
	angular points of decagon,	1S		straight lines, then the	number of parallelogr	rams, thus
	(a) 30	(b) 45		formed, is		
	(c) 90	(d) 120		(a) 20	(b) 60	Y
25.	If n is an integer between	0 and 21, then the minimum		(c) 101	(d) 126	
	value of $n!(21-n)!15$	(b) 10!11!	37.	. The total number of number of	mbers that can be forme	d by using
	(a) 9!2!	(d) 21!		all the digits 1, 2, 3, 4, 3	, 2, 1, so that the odd dig	gits always
	(c) 20!	(u) 21:		occupy the odd places,	is	*
26.	The maximum number of po	oints of intersection of 8 circles,		(a) 3	(b) 6	
	is	(b) 24		(c) 9	(d) 18	
	(a) 16	(d) 56	38	. The sides AB, BC and C	A of a triangle ABC have	3, 4 and 5
	(c) 28	of points of intersection of		interior points respect	tively on them. The r	number of
27.	The maximum number	of points of intersection of		mangles that can be	constructed using the	se interior
	8 straight lines, is	(b) 16		points as vertices, is (a) 205	(L) 000	
	(a) 8	(b) 16		(a) 205 (c) 220	(b) 208	
	(c) 28	(d) 56		(C) 44U	(d) 380	

		to		(n) (n) (n)
		(a) 60 (b) 120	50.	For $2 \le r \le n$, $\binom{n}{r} + 2 \binom{n}{r-1} + \binom{n}{r-2}$ is equal to
4.1		(c) 720 (d) none of these		$\binom{n+1}{n+1}$
	40.	Ten different letters of an alphabet are given. Words with five letters (not necessarily meaningful or pronounceable)		(a) $\binom{n+1}{r-1}$ (b) $2\binom{n+1}{r+1}$
K.		are formed from these letters. The total number of words which have at least one letter repeated, is (a) 21672 (b) 30240		(c) $2\binom{n+r}{r}$ (d) $\binom{n+2}{r}$
		(c) 69760 (d) 99748	51.	The number of positive integers satisfying the inequality $n+1$
•	41.	Twenty eight matches were played in a football		$^{n+1}C_{n-2} - ^{n+1}\hat{C}_{n-1} \le 100 \text{ is}$
		tournament. Each team met its opponent only once. The		(a) nine (b) eight
		number of teams that took part in the tournament, is (a) 7 (b) 8	50	(c) five (d) none of these
			52.	A class has 21 students. The class teacher has been asked
	42.	(c) 14 (d) none of these Everybody in a room shakes hand with everybody else. The		to make n groups of r students each and go to zoo taking one group at a time. The size of group (ie, the value of r) for
		total number of handshakes is 66. The total number of persons in the room is		which the teacher goes to the maximum number of times is (no group can go to the zoo twice)
		(a) 11 (b) 12		(a) 9 or 10 (b) 10 or 11
		(c) 13 (d) 14		(c) 11 or 12 (d) 12 or 13
	43.	The total number of 3 digit even numbers that can be composed from the digits 1, 2, 3,, 9 when the repetition of digits is not allowed, is	53.	The number of ways in which a score of 11 can be made from a through by three persons, each throwing a single die once, is
		(a) 224 (b) 280		(a) 45 (b) 18
		(c) 324 (d) 405	- 4	(c) 27 (d) 68
	44.	The total number of 5 digit telephone numbers that can be	54.	The number of positive integers with the property that
		composed with distinct digits, is (a) $^{10}P_2$ (b) $^{10}P_5$		they can be expressed as the sum of the cubes of 2 positive integers in two different ways is
		10		(a) 1 (b) 100
	45	Cay seems of mices		(c) infinite (d) 0
	45	A car will hold 2 persons in the front seat and 1 in the rear seat. If among 6 persons only 2 can drive, the number of ways, in which the car can be filled, is (a) 10 (b) 18	55.	The number of triangles whose vertices are the vertices of an octagon but none of whose sides happen to come from the octagon is
		(c) 20 (d) 40		(a) 16 (b) 28 (c) 56 (d) 70
	46	. In an examination there are three multiple choice	56	(4) / 0
		which only one is correct. The total number of ways in which an examinee can fail to get all answers correct is	00.	There are n different books and p copies of each in a library. The number of ways in which one or more than one book can be selected is (a) $p^n + 1$ (b) $(p+1)^n - 1$
		(a) 11 (b) 12 (c) 27 (d) 63		(c) $(p+1)^n - p$ (d) p^n
	47		57	
	4/	The sum of the digits in the unit's place of all the numbers formed with the digits 5, 6, 7, 8 when taken all at a time, is (a) 104 (b) 126 (c) 137	37.	In a plane there are 37 straight lines, of which 13 pass through the point A and 11 pass through the point B . Besides, no three lines pass through one point, no lines
	40	(c) 127 (d) 156		passes through both points A and B, and no two are
	40.	Two straight lines intersect at a point O . Points $A_1, A_2,, A_n$ are taken on one line and points $B_1, B_2,, B_n$ on the other. If the point O is not to be used, the number of		parallel, then the number of intersection points the lines have is equal to (a) 535 (b) 601
		triangles that can be drawn using these points as vertices,	FO	(c) 728 (d) 963
		is (1) (1) ²	აგ.	We are required to form different words with the help of
		(a) $n(n-1)$ (b) $n(n-1)^2$		the letters of the word INTEGER. Let m_1 be the number of words in which I and N are power to replace and m , be the
		(c) $n^2 (n-1)$ (d) $n^2 (n-1)^2$		words in which I and N are never together and m_2 be the number of words which beginning with I and end with R ,
	49	How many different nine digit numbers can be formed		then m_1/m_2 is given by
		from the number 22 33 55 888 by rearranging its digits, so		(a) 42 (b) 30
		that the odd digits occupy even positions?		(c) 6 (d) 1/30

(a) 16 (c) 60 (b) 36 (d) 180

39. Total number of words formed by using 2 vowels and 3 consonents taken from 4 vowels and 5 consonents is equal

		r or permutations of x		(a) 72	142111011	(b) 71		4.4	
	permutations of $x - 11$ things taken	nd c the number of		(c) 66		(d) 52		Terror .	
	a = 182 bc, then the value of x is	i all at a time such that	0	The number of c	livieore	A CONTRACTOR OF THE CONTRACTOR	38808	can I	have.
	(a) 15 (b) 1:		7.	excluding 1 and the	e numbe	r itself is	00000		,
	(c) 10 (d) 1	Q		(a) 70	e mumbe.	(b) 72			e Circ
60.	There are n points in a plane of w	which no three are in a		(a) 70 (c) 71		(d) none	of these		
	straight file except m Which are all	in a straight line Then		The letters of the v	rond CIII				sible
	the multiper of different diadrilater	rals that can be formed	U.	orders and these w	orde ore	uritten ou	t ac in a	diction	narv.
	with the given points as vertices, is	s char can be formed		Then the rank of th			t as m a	diction	ilary.
	(a) ${}^{n}C_{4} - {}^{m}C_{3}^{n-m+1}C_{1} - {}^{m}C_{4}$			(a) 236	ie word a	(b) 245		- X	
				(a) 230 (c) 307		(d) 315			1000
	(b) ${}^{n}C_{4} - {}^{m}C_{3}{}^{n-m}C_{1} + {}^{m}C_{4}$	71		The total number of	f coven di	Marine Commercial	rs the sur	n of w	hose
x	(c) ${}^{n}C_{4} - {}^{m}C_{3} \cdot {}^{n-m}C_{1} - {}^{m}C_{4}$			digits is even, is	seven u	igit mumbe	is the sur	11 01 11	11000
	(d) ${}^{n}C_{4} + {}^{n}C_{3} \cdot {}^{m}C_{1}$			(a) 9×10^6		(b) 45×	10 ⁵		
61	, , ,			(c) 81×10^5		(d) 9×1			
01.	The number of ordered triples of para solutions of the								
	are solutions of the equation $x + y$ (a) 5081 (b) 60			In a steamer there					
				cows, horses and ca					
62				be shipped; the tot		er of ways	in whic	h the	snıp
02.	The number of numbers less than 1			load can be made is	3	d > 103			
	out of the digits, 0, 1, 2, 4 and 5, no (a) 69 (b) 68			(a) 3^{12}		(b) 12^3 (d) $^{12}C_2$			
		C 1		(c) $^{12}P_3$. , ,			
				The number of		ative inte	gral sol	utions	of
63.	A is a set containing n elements. A	subset P_1 is chosen and		$x_1 + x_2 + x_3 + 4x_4 =$	= 20 is	<i>a</i>			
	A is reconstructed by replacing the			(a) 530		(b) 532			
	same process is repeated for subs			(c) 534		(d) 536			_
	m > 1. The number of ways of cho	posing P_1, P_2, \dots, P_m , so 74		The number of six of					
	that $P_1 \cup P_2 \cup \ldots \cup P_m = A$ is	20 a 20		the digits 1, 2, 3, 4, !			ligits do	not re	peat
	., .	$(2^n-1)^m$		and the terminal dig	gits are e				
	(c) $^{m+n}C_m$ (d) no	one of these		(a) 144		(b) 72			
64	On a railway there are 20 stations. T	he number of different		(c) 288		(d) 720			
0 1.	tickets required in order that it ma	be possible to travel). (Given that n is the o	dd, the n	umber of v	vays in w	hich tl	hree
	from every station to every station	is	I	numbers in AP can l	be selecte	ea from 1,	2, 3, 4,	, n is	
	(a) 210 (b) 22		((a) $\frac{(n-1)^2}{2}$		(b) $\frac{(n+1)^2}{4}$ (d) $\frac{(n-1)^2}{4}$	1)-		
	(c) 196 (d) 10	05		(-, 1) ²		4	- > 2		
65	A is a set containing n elements. A s	subset P of A is chosen.	((c) $\frac{(n+1)^2}{2}$		(d) $\frac{(n-1)^n}{n}$	1)2		
05.	The set A is reconstructed by replace	ing the element of P. A		500 SEE					
	subset Q of A is again chosen. The	ne number of ways of 76	5. A	4 is a set containing	n eleme	nts. A subs	et P of A	is cho	sen.
	choosing P and Q, so that $P \cap Q = \emptyset$		1	The set A is recons	tructed	by replacii	ng the el	ement	ts of
	(a) $2^{2n} - {}^{2n}C_n$ (b) 2^n		F	A subset Q of A is	again ch	iosen. The	number	of way	vs of
	(1) 07	t.	C	chosing P and Q ,	so that	$P \cap Q$ co	ntains ex	cactly	two
	(C) 2 1			elements is		4 - n	1		
66.	A father with 8 children takes 3 at a	time to the zoological		(a) $9^{n}C_{2}$		(b) $3^n - 1$	_		
	gardens, as often as he can witho			(c) $2^n C_n$		(d) none			
	children together more than once. T	The Humber of times he 77	'. E	Eight straight lines a	re drawr	in the pla	ne such t	hat no	two
	will go to the garden is		1.	mes are paramer ar	id no thi	ree lines a	re concu	rront	The
	(a) 336 (b) 11		1.	iumber of parts into	which th	nese lines d	livide the	plane	is.
	101.30	one of these	_ (a) 29		(b) 32			, 10
67.	If the $(n+1)$ numbers $a, b, c, d,$, be all different and		(c) 36		(d) 37	4.1		
	each of them a prime number,	then the number of 78	. N	Number of divisors	s of the	form 4n	+2(n>	0) of	the
	different factors (other than 1) of a^{α}	$\cdots \cdot b \cdot c \cdot a \dots 1s$	n	integer 240 is			5	J 01	TIC
	(a) $m-2^n$ (b) $(m-2^n)^n$	$(n+1) 2^n$		a) 4		(b) 8	7-		
	(c) $(m+1) 2^n - 1$ (d) no	ne of these	(c) 10		(d) 3			
	(6) (11.1 1) 2 (2) 110	energies endertratestering states (5		51 04	You		- 27	1.7	

59. If a denotes the number of permutations of x + 2 things 68. The number of selections of four letters from the letters of

the word ASSASSINATION is

taken all at a time, b the number of permutations of x

7	9. An <i>n</i> digit number is a positive number with exactly <i>n</i> digits. Nine hundred distinct <i>n</i> digit numbers are to be formed using only the three digits 2, 5 and 7. The smallest value of <i>n</i> for which this is possible is (a) 6 (b) 7	88	of the lectures. The nur	ers are to deliver lectures in seven particular day. A, B and C are three inber of ways in which a routine for ch that A delivers his lecture before
	(c) 8 (d) 9		(a) 210	(b) 420
80	O. If a, b, c, d are odd natural numbers such that		(c) 840	(d) none of these
	a+b+c+d=20, then the number of values of the	89.	If 33! is divisible by 2'	n, then the maximum value of n is
	ordered quadruplet (a, b, c, d) is (a) 165 (b) 310	1	equal to	X 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	(5) 010		(a) 33	(b) 32
81			(c) 31	(d) 30
0.	1. The number of rectangles excluding squares from a rectangle of size 15 × 10 is	90.	The number of zeros at	the end of 100! is
	(a) 3940 (b) 4940		(a) 54	(b) 58
	(c) 5940 (d) 6940		(c) 24	(d) 47
82	2. In a certain test, there are n questions. In this test 2^{n-i} students gave wrong answers to at least i questions, where	91.	letters of the word EAR'	
	$i = 1, 2, 3, 4, \dots, n$. If the total number of wrong answers		(a) 1045	(b) 2190
	given is 2047, then n is equal to (a) 10 (b) 11		(c) 4380	(d) 2348
	(a) 10 (b) 11 (c) 12 (d) 13	92.	In a city no persons have	e identical set of teeth and there is
83	The exponent of 3 in 100! is		no person without a too	oth. Also no person has more than
	(a) 12 (b) 24		consider only the pos	d the shape and size of tooth and itioning of the teeth, then the
	(c) 48 (d) 96		maximum population of	the city is
84	. If all permutations of the letters of the word AGAIN are		(a) 2^{32}	(b) $2^{32} - 1$
	arranged as in dictionary, then fiftieth word is		(c) $2^{32} - 2$	(d) $2^{32} - 3$
	(a) NAAGI (b) NAGAI	03		which a mixed double game can be
	(c) NAAIG (d) NAIAG	75.	arranged from amongst	9 married couples, if no husband
85	. The number of different ways the letters of the word		and wife play in the sam	ne game is
	VECTOR can be placed in the 8 boxes of the given below		(a) 756	(b) 1512
	such that no row empty is equal to	04	(c) 3024	(d) none of these
		94.	6 out of 10 questions will	, a candidate is required to answer hich are divided into two sections
			each containing 5 quest	tions further the candidate is not
			permitted to attempt mo	ore than 4 questions from either of
	(1) 0(the section. The number	of ways in which he can make up
	(a) 26 (b) 26 × 6!		a choice of 6 questions is	S
06	(c) 6! (d) 2!× 6!		(a) 200	(b) 150
80.	In the next world cup of cricket there will be 12 teams, divided equally in two groups. Teams of each group will	05	(c) 100	(d) 50
	play a match against each other. From each group 3 top	95.	placed in three identical	which 9 identical balls can be
	teams will qualify for the next round. In this round each			
	team will play against others once. Four top teams of this		(a) 55	(b) $\frac{9!}{(3!)^4}$
	round will qualify for the semifinal round, when each team		ca 9!	
	will play against the others once. Two top teams of this		(c) $\frac{9!}{(3!)^3}$	(d) 12
	round will go to the final round, where they will play the			ments of $(n-1)$ things taken from
	best of three matches. The minimum number of matches in			mes the number of arrangements
FT .	the next world cup will be		of $(n-1)$ things taken fr	n things in which two things
7.	(a) 54 (b) 53		are identical, then the va	alue of k is
	(c) 52 (d) none of these		(a) 1/2	(b) 2
87.	Two lines intersect at O. Points $A_1, A_2,, A_n$ are taken on		(c) 4 The number of different	(d) none of these seven digit numbers that can be
	one of them and $B_1, B_2,, B_n$ on the other the number of triangles that can be drawn with the help of these $(2n + 1)$	71.	written using only the t	three digits 1, 2 and 3 with the
	points is		condition that the digit 2	coccurs twice in each number is
			(a) ${}^{7}P_{2} \cdot 2^{5}$	$(b)^7 C_2 \cdot 2^5$
	(a) n (b) n^2 (c) n^3 (d) n^4		(c) ${}^{7}C_{2} \cdot 5^{2}$	(d) none of these
			ent v	= 300

98. The number of points (x, y, z) in space, whose each coordinate is a negative integer such x + y + z + 12 = 0 is

(a) 385 (c) 110

(b) 55

(d) none of these

99. The number of divisors of $2^2 \cdot 3^3 \cdot 7^5$ of the form $4n+1, n \in N$ is

(a) 46

(b) 47

(c) 96

(d) 94

100. The number of ways in which 30 coins of one rupee each be given to six persons, so that none of them receives less than 4 rupees is

(a) 231

(b) 462

(c) 693

(d) 924

101. The number of integral solutions of the equation 2x + 2y + z = 20, where $x \ge 0$, $y \ge 0$ and $z \ge 0$ is

(a) 132

(b) 11

(c) 33

(d) 66

102. The number of ways in which we can choose 2 distinct integers from 1 to 100 such that difference between them is at most 10 is

(a) ${}^{10}C_2$

(b) 72

(c) ${}^{100}C_2 - {}^{90}C_2$

(d) none of these

103. Number of points having position vector $a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$ where $a, b, c \in \{1, 2, 3, 4, 5\}$ such that $2^a + 3^b + 5^c$ is divisible by 4 is

(a) 70

(b) 140

(c) 210

(d) 280

104. Number of positive integral solutions of xyz = 30 is

(a) 9

(b) 27

(c) 81

(d) 243

Answers

101. (d)

Objective Questions Type I [Only one correct answer]

102. (c)

1.	(b))	2 .	(c)	3.	(b)	4.	(a)	5.	(d)	6.	(b)	7.	(b)	8.	(b)	9.	(c)	10.	(b)
11.		-01 100		10 10	13.		14.		15.		16.		17.	(b)	18.	(c)	19.	(b)	20.	(d)
21			22.	121 21	23.	670 (20)	24.		25.		26.	(d)	27.	(c)	28.	(b)	29.	(b)	30.	(d)
31		-	32.	100	33.	101 101	34.			(b)	36.	(b)	37.	(d)	38.	(a)	39.	(d)	40.	(c)
41	10-20	500	42.	100	43.		44.			(d)	46.	(d)	47.	(d)	48.	(c)	49.	(c)	50.	(d)
	. (b	(5)	52.	8 6	53.		54.	100 000		(a)	56.		57.	(a)	58.	(b)	59.	(b)	60.	(c)
61	157.0	1161	62.		63.			(a)		(d)	66.		67.	(c)	68.	(a)	69.	(a)	70.	(a)
		7		21 121		(d)		(d)		(d)		(d)	77.	(d)	78.	(a)	79.	(b)	80.	(a)
71			82.	500-01-00		(c)		(c)		(b)		(b)	87.	(c)	88.	(c)	89.	(c)	90.	(c)
81			92.	200		(b)		(a)		(d)		(b)	97.		98.	(b)	99.	(b)	100.	(b)
-	L. (1 L. (1	b)	92. 102.	. ,	103.		104.			, (4)		(-)								